
Towards Generating Textual Game Assets from Real-World Data
Judith van Stegeren

University of Twente

Enschede, The Netherlands

j.e.vanstegeren@utwente.nl

Mariët Theune

University of Twente

Enschede, The Netherlands

m.theune@utwente.nl

ABSTRACT
We propose using real-world datasets to generate textual game

assets for serious games. As an example, we used a dataset of P2000

crisis event messages to generate descriptive texts that can be trans-

formed into new game assets by game writers, thereby reducing

the writing effort required during the development phase of an

adaptive serious game. In this paper we describe this first attempt

and we discuss the challenges and possibilities of using open data

for textual asset generation.

CCS CONCEPTS
•Computingmethodologies→Natural language generation;
• Applied computing → Computer games; • Software and its
engineering → Interactive games;

KEYWORDS
serious games, procedural content generation, natural language

generation, real-world data

ACM Reference Format:
Judith van Stegeren and Mariët Theune. 2018. Towards Generating Textual

Game Assets from Real-World Data. In Foundations of Digital Games 2018
(FDG18), August 7–10, 2018, Malmö, Sweden. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3235765.3235809

1 INTRODUCTION
Serious games, i.e. computer games with a defined purpose other

than pure entertainment [2], are a useful supplement to educational

activities in a variety of fields. In some cases, serious games might

even have advantages over more traditional methods of education.

For example, fire fighters can use serious games to experience

situations that may not easily be recreated in the real world due to

ethical concerns and cost and time constraints [14].

Most games ship with a pre-made set of game elements, which

will not be changed once the development phase of the game is

finished. When playing the game, all players will be presented with

the same game content. However, as there might be differences in

player abilities and preferences, not all game content will fit every

player. For games with an educational purpose, the aforementioned

problem is even more acute [9]. For example, players might differ

in educational background, skill level, or preferred learning style,

and might need game content to suit their specific needs. If this

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

FDG’18, August 7-10, 2018, Malmö, Sweden
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6571-0/18/08.

https://doi.org/10.1145/3235765.3235809

extra content is not available, the differences between player needs

and game content might decrease the effectiveness of the training

aspect of the game.

A possible solution to this problem is incorporating player-

centered adaptivity. An adaptive game changes elements of the

game based on the player. For example, the player could be pre-

sented with different game material based on his or her in-game

performance.

An adaptive game requires more content than a regular game,

in order to cater to the various player types. This means that the

developers have to create more game content during the develop-

ment phase to accommodate for the adaptivity. Procedural Content

Generation (PCG), or the creation of content automatically through

algorithmic means, is a potential solution for developing adaptive

games [15]. It can be used for creating any kind of game content,

i.e., all aspects of a game that influence player experience but are

not non-player character behaviour or the game engine itself. [15]

Using PCG for an adaptive game has the advantage that a gen-

erator can create some of the game elements, which might be less

expensive than developing the game assets by hand. Provided we

take adaptivity and, in the case of serious games, the educational

purpose of the game into account, a generator can create variations

of game assets to make the game fit for different types of players. In

order to do this successfully, developers should formulate a steering

purpose for the adaptivity. [9] This adaptivity goal can be used to

give direction to the implementation of the generator and serve as

a criterion for evaluating the generated result. The generator can

be used as an authoring aid or for generating game contents that

can be placed directly into the game.

Togelius et al. [11] distinguish between online and offline con-

tent generation. Online generation happens during the runtime of

the game, whereas offline generation happens during game devel-

opment. In the present paper, we will only consider offline content

generation.

Game developers in academic and commercial settings are cur-

rently using procedural content generation to create game elements

such as game levels, textures, 3D objects and game worlds [7]. PCG

can also be used to generate textual game elements. For example,

in Dwarf Fortress [1] an extensive textual history is generated for

each new world in the game, including locations, notable figures

and important events.

In this research, we present our first steps in generating textual

game assets for serious games for the crisis response field. As a

starting point, we have chosen to use real-world data as a base for

our generated text. The idea is that the resulting texts can be used

by game designers and game writers when creating new content.

In Section 2, we describe the type of serious games we are tar-

geting with our work. In Section 3, we present our approach to

generating textual game assets from real-world data. In Section 4,

https://doi.org/10.1145/3235765.3235809
https://doi.org/10.1145/3235765.3235809


FDG’18, August 7-10, 2018, Malmö, Sweden Judith van Stegeren and Mariët Theune

Figure 1: Screenshot of the Mayors game

we present a concrete example using real-world data from the crisis

domain. We end with a discussion of challenges and possibilities in

Section 5.

2 BACKGROUND
This research is part of theData2Game project.WithinData2Game,

we want to develop a serious game for the crisis domain, for training

crisis officials. The goal of the game is to train these professionals in

the competencies required by their job, such as decision-making un-

der pressure and coordinating the various crisis organisations. The

serious game under development is a text-driven dilemma-based se-

rious game. An example of a game in this style is the “Mayors game”

[12], a dilemma-based narrative game that is used for training new

mayors in the Netherlands in decision-making and leadership skills.

For a screenshot of the game, see Figure 1. In the Mayors game,

the player is offered a series of dilemmas in the context of a crisis

scenario situated in a municipality. The player can obtain advice

from a group of virtual advisors (NPCs) that represent various sup-

porting organisations, such as the fire department, police service

and public health service. Based on the choices of the player, the

game creates an assessment of the decision-making skills and the

favored leadership style of the player.

In a narrative game such as the Mayors game, text is the driving

element. We might even describe the Mayors game as a text-based

game, since in the absence of graphics or a graphical user interface,

the game would still be playable [8]. Naturally, the most important

textual game assets are the dilemmas. They are presented in the

context of a scenario or situational description, which is a fictional

narrative, for example in the form of a short story, an eye-witness

account or a newspaper article. In addition to the dilemmas and

their context, the game presents advice or opinions from all NPCs

to the player in the form of short monologues. These provide extra

information that could help the player make a decision. NPCs try

to persuade the player to take the course of action that matches the

goals and interests of the organisation they represent, just as in real

life. Manually creating all these textual assets requires substantial

effort during the development phase of the game.

3 PROPOSED APPROACH
We expect that a game with realistic content, which exposes players

to situations they would encounter in the real world, will have a

positive effect on the learning experience of the players. Therefore

our game should contain assets that contribute to the learning goal

and are realistic for the target group.

We want to use procedural content generation to obtain game

assets for the game under development. Since the game should also

be adaptive, we will need a large amount of content. A generator

can reduce the effort required by the game designers, provided

the development of the generator outweighs the cost of writing all

content by hand.

We expect that taking real-world data as input for the generator

will lead to increased realism in the generated game assets. Westera

et al. [13] already suggested extending virtual game worlds with

additional data, such as weather reports or share prices, to enhance

the dynamics and the authenticity of the game. Our approach of

generating game assets from datasets is also related to the data
games proposed by Friberger et al. Data games use real world infor-

mation (such as open data) to automatically generate game content.

[5]

Using real-world data to generate game assets is especially useful

in the context of serious games. If enough real-world data related

to the target domain is available, we can use this to reduce the

authoring effort required by the game designers to create believable

game content.

Since this research is performed in the context of serious games

for the crisis response field, we will focus on this specific application

as an example. We have experimented with real-world events from

the crisis domain to test the feasibility of our approach.

As an example, in the next section we will describe a first ex-

periment with game asset generation from real-world data in the

context of our serious game.

4 GAME ASSET GENERATION EXAMPLE
Our goal is to develop a game similar to theMayors game. Our target

audience consists of management level employees in the crisis

response field, who we want to train in the competencies relevant

for their job. Mavromoustakos et al. have described our initial

design for the serious game under development. For a description

of the architecture and the gameplay, see [10]. We have made the

first steps in generating natural language texts based on real-world

events, that can be transformed by game writers to serve as a

context for the dilemmas presented in the game. Because of our

target audience, we took a dataset with real-world crisis events
1
as

a starting point. Note that it is not our goal to create non-fiction

texts. We only want to use the dataset to generate realistic fiction.

The dataset consists of a collection of crisis response messages

from P2000. The P2000 protocol is part of the Dutch emergency

communication network. Crisis response organisations such as the

police, ambulance services and the fire and rescue services use it to

communicate with each other and the various Dutch public-safety

answering points. The messages are comparable to text messages

with a specified format; they consist of a header with a timestamp,

region code, target service (ambulance, police, coast guard, etc.),

priority classification and a message body. For an example of a

P2000 event, see Figure 2.

1
https://www.livep2000.nl

https://www.livep2000.nl


Towards Generating Textual Game Assets from Real-World Data FDG’18, August 7-10, 2018, Malmö, Sweden

17:06:00 08-02-18 17 AMBU B1 AMBU 17302 MAASSTADWEG
3079DZ ROTTERDAM ROTTDM bon 14294

Figure 2: A P2000 message

Message header

17:06:00 time

08-02-18 date

17 region (Rotterdam-Rijnmond)

AMBU receiver (ambulance)

B1 priority (low)

Message body

AMBU 17302 vehicle identifier

MAASSTADWEG location

3079DZ location

ROTTERDAM location

ROTTDM location

bon 14294 unknown identifier

Figure 3: The parser assigns labels to the various parts of the
P2000 message from Figure 2.

Currently, the generator for natural language text consists of a

simple templating engine. We parsed the P2000 events by labeling

the different message parts with the terminals of a context-free

grammar. For an example of a labeled P2000 code, see Figure 3. The

labels of the parsed event code are then used to generate a natural

language text. At the moment, the natural language generation step

consists of a straight-forward templating engine that fills in the

blanks in a template text based on the labels of the P2000 message.

For example, we can apply the labeled data from Figure 3 to the

template shown in Figure 4 (left). This way we obtain the natural

language text shown in Figure 4 (right).

The texts we can generate thus far are fairly short, since they are

based on the labels of only one P2000 message. However, by aggre-

gating data from other public sources, we can extend this basic text

into a more complex situational description. For example, we can

use the Google Maps API for routes
2
to get an estimate for the time

it would take a crisis response vehicle to arrive at the crisis location.

After obtaining the information from the API, we can incorporate

it in the text. For example, continuing with the P2000 code from

Figure 2, we queried Google Maps for the closest ambulance service

point near the event location. This turned out to be the ambulance

service point at the Spuistraat in Amsterdam, which means this

address could be a realistic starting point for an ambulance if such

a crisis would occur in the real world. Subsequently, we queried

Google Maps for the time it would take a car (ambulance) to travel

from that point to the crisis location.

Although we do not have the complete Google Maps dataset, the

API allows us to incorporate this information fully automatically.

This makes the use of API data very suitable for procedural content

generation. The queries for the GoogleMaps API can be constructed

2
https://cloud.google.com/maps-platform/routes/

algorithmically, provided the underlying P2000 code contains loca-

tion data. We can transform the related data from Google Maps into

an additional sentence for our output text, such as "The ambulance

arrives 13 minutes after receiving the emergency call."

This is only one example of aggregating more data to supplement

our initial dataset. Because data APIs and open datasets become

increasingly available [4], we believe that there are many other pos-

sible datasets that can be used to extend the generated descriptions.

5 DISCUSSION
Above, we have presented our first preliminary results in generating

textual game assets for serious games from real-world data. We can

use these texts to reduce development effort for game designers and

adapt the game to the player. At the moment, we see two different

applications for the generated texts.

Firstly, the generated texts can be used as a starting point for the

context description of a dilemma. For example, for a dilemma about

rescuing people during a large fire, we could choose a corresponding

P2000 message about a fire, change some of the labels to make the

data fit the dilemma, and generate a text. Conversely, we could start

by generating a text from a random P2000 message, and use it as a

starting point for writing new dilemmas.

Secondly, the generated texts can function as contextual noise

during gameplay. The current prototype of our game, which is

very similar to the Mayors game, tries to train players in analysing

information under pressure. We plan on extending the gameplay

with a stream of messages, similar to a social media stream. A small

part of the messages will be relevant to the current dilemma, and

offer additional information about the storyline. The rest of the

messages will function as noise, distracting the player and drawing

on their critical analysis skills. Authoring the noise is an extra task

for the game designers, who would rather focus on writing the

small set of relevant messages. The outcome of this research could

be used as a first step in automatically generating these messages

instead.

There are various ways we can use generated game content

to make the game adaptive and improve the player experience.

Firstly, players could be presented with content that is based on

P2000 messages from their region of origin. This way, the game

will feature locations or events that are recognizable from real life.

Furthermore, we could offer players different game content based

on their amount of job experience. We could do this by ranking the

P2000 messages in the dataset from common (for events that happen
daily) to rare (for events that happen only once a year or less).

Game content based on common occurrences could be considered

as ‘easy’ training game material. The idea is that common events

happen so often that only a player with limited job experience will

find them challenging. Content based on rare events will provide

more difficult training material, as even experienced players will

rarely have encountered these events in their work. We expect that

offering game content with varying levels of difficulty will improve

the effectiveness of the training game.

If we use the generated texts as contextual noise, we can make

the game adaptive by varying the amount of noise in the message

stream according to the performance of the player.

https://cloud.google.com/maps-platform/routes/


FDG’18, August 7-10, 2018, Malmö, Sweden Judith van Stegeren and Mariët Theune

On the [time] of [date], the Dutch [service] service
for the region of [region] receives a P2000 message.
[activity] is requested for [reason] at [location].

“On the evening of February 8th, the Dutch ambulance service

for the region of Rotterdam-Rijnmond receives a P2000 mes-

sage. An ambulance is requested for transport services at the

Maasstadweg in Rotterdam."

Figure 4: Example template (left) and generated text (right)

Using a dataset as a source for generating game content has

its limitations. One drawback of the dataset we used is that every

P2000 event stands on its own. Since there are no relations present

between the messages in the dataset, it is difficult to generate more

complex or longer texts from them. Thus, we plan to extend the

P2000 event codes with additional information from other sources,

in order to build a more complete description of a crisis event. Our

integration of Google Maps data is a first step in this direction.

During the course of this project, we ran into problems related to

using (open) data in general, similar to the issues described by Ding

et al. [3] Non-trivial manual effort was required before we could use

the dataset. First we had to deal with problems such as incomplete

information and the use of special codes and acronyms. For example,

our parser cannot parse the jargon and other domain-specific terms

that are present in the P2000messages. Those terms should be either

labeled manually, which requires domain knowledge, or removed

from the P2000 dataset during clean-up. The latter has as a drawback

that the system can only interpret (and thus generate texts from)

the most basic P2000 messages, which leads to predictable and

uninteresting output.

At the moment, we have manually assembled a small dictionary

of crisis management jargon which we use to parse a small part

of the dataset. However, we think that automatically gathering

information about jargon could be used to mitigate the challenges

related to parsing domain-specific terms. On the Internet we can

find various dictionaries, such as a list of commonly used P2000

abbreviations and their meaning
3
and a list of known vehicle call

signs
4
. Linking these sources of information to our parser can

probably help us decipher the message body of each P2000 event.

In addition to domain-specific jargon, we need to parse the loca-

tion information in the P2000 messages. Currently, location indi-

cators such as street and city names have to be labeled manually,

as the parser cannot recognize them automatically. This can easily

addressed by adding another dataset to the system, namely the

database of the Dutch registry for real estate, which is available as

open data
5
.

Despite these challenges, we think that it is feasible to generate

textual game assets from open or public datasets. The next steps for

this research project will consist of improving the parser, to extract

more meaningful information from the dataset, and adding relevant

external data sources to improve the output text. Furthermore we

plan on extending the game with a stream of messages, as explained

above. We will also evaluate our findings with both game devel-

opers and players, to assess the usefulness of the generated game

elements. Within Data2Game, a pilot study was already conducted

for measuring player stress and skill levels, from both physiological

3
https://alarmeringen.nl/hulpdiensten/p2000-afkortingen/

4
https://www.tomzulu10capcodes.nl/

5
https://data.overheid.nl/data/dataset/basisregistratie-adressen-en-gebouwen--bag-

sensors and in-game player actions. In future, we can use the find-

ings from this pilot to measure whether incorporating adaptivity

using generated game assets improves the learning experience.

As future work, we are planning to look into more advanced

natural language generation techniques [6] to replace the simple

templating system and generate more varied and complex texts.

In subsequent research, we also plan to focus more on affective

language generation to improve the player experience. A study of

domain-specific jargon, in order to make the generated texts more

recognizable and thus relatable for players, could be a step in this

direction.

6 ACKNOWLEDGEMENT
This research is supported by the Netherlands Organisation for

Scientific Research (NWO) via the Data2Game project (project

number 055.16.114).

REFERENCES
[1] Tarn Adams and Zach Adams. 2002. Dwarf Fortress. Game [PC]. Bay 12 Games,

Silverdale, WA, USA. Played May 2018.

[2] P. Backlund, H. Engstrom, C. Hammar, M. Johannesson, and M. Lebram. 2007.

Sidh—a game based firefighter training simulation. In Information Visualization,
2007. IV’07. 11th International Conference. IEEE, 899–907.

[3] Li Ding, Deborah L. McGuinness, James R. Michaelis, and Jim Hendler. 2010.

Making sense of open government data. In Proceedings of the WebSci10: Extending
the Frontiers of Society On-Line.

[4] Marie Gustafsson Friberger and Julian Togelius. 2012. Generating interesting

monopoly boards from open data. In Computational Intelligence and Games (CIG),
2012 IEEE Conference on. IEEE, 288–295.

[5] M. Gustafsson Friberger, Julian Togelius, A. Borg Cardona, Michele Ermacora,

Anders Mousten, M. Møller Jensen, V. Tanase, and Ulrik Brøndsted. 2013. Data

games. In 4th Workshop on Procedural Content Generation. ACM, 1–8.

[6] Albert Gatt and Emiel Krahmer. 2018. Survey of the State of the Art in Natural

Language Generation: Core tasks, applications and evaluation. Journal of Artificial
Intelligence Research 61 (2018), 65–170.

[7] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.

2013. Procedural content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 9, 1 (2013), 1.

[8] Michael Heron. 2013. “Likely to be eaten by a Grue”—the relevance of text games

in the modern era. The Computer Games Journal 2, 1 (2013), 55–67.
[9] Ricardo Lopes and Rafael Bidarra. 2011. Adaptivity challenges in games and

simulations: a survey. IEEE Transactions on Computational Intelligence and AI in
Games 3, 2 (2011), 85–99.

[10] Paris Mavromoustakos-Blom, Sander Bakkes, and Pieter Spronck. 2018. Person-

alized Crisis Management Training on a Tablet. In Proceedings of Foundations of
Digital Games. ACM.

[11] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron

Browne. 2011. Search-based procedural content generation: A taxonomy and

survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011), 172–186.

[12] Josine G.M. van de Ven, Hester Stubbé, and Micah Hrehovcsik. 2013. Gaming for

policy makers: It’s serious!. In International Conference on Games and Learning
Alliance. Springer, 376–382.

[13] Wim Westera, R.J. Nadolski, Hans G.K. Hummel, and Iwan G.J.H. Wopereis. 2008.

Serious games for higher education: a framework for reducing design complexity.

Journal of Computer Assisted Learning 24, 5 (2008), 420–432.

[14] F. Michael Williams-Bell, B. Kapralos, A. Hogue, B.M. Murphy, and E.J. Weckman.

2015. Using serious games and virtual simulation for training in the fire service:

a review. Fire Technology 51, 3 (2015), 553–584.

[15] Georgios N. Yannakakis and Julian Togelius. 2011. Experience-driven procedural

content generation. IEEE Transactions on Affective Computing 2, 3 (2011), 147–161.

https://alarmeringen.nl/hulpdiensten/p2000-afkortingen/
https://www.tomzulu10capcodes.nl/
https://data.overheid.nl/data/dataset/basisregistratie-adressen-en-gebouwen--bag-

	Abstract
	1 Introduction
	2 Background
	3 Proposed Approach
	4 Game Asset Generation Example
	5 Discussion
	6 Acknowledgement
	References

